Posts

Showing posts from October, 2016

Variable stars close to the Galactic Centre

Image
Ancient stars, of a type known as RR Lyrae, have been discovered in the centre of the Milky Way for the first time, using ESO’s infrared VISTA telescope. RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old. Their discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. These stars may even be the remains of the most massive and oldest surviving star cluster of the entire Milky Way. A team led by Dante Minniti (Universidad Andrés Bello, Santiago, Chile) and Rodrigo Contreras Ramos (Instituto Milenio de Astrofísica, Santiago, Chile) used observations from the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, to carefully search the central part of the Milky Way. By observing infrared light, which is less affected by cosmic dust than visible light, and exploiting the excellent conditions at ESO’s Paranal Observatory, the team was able to g...

Comet Lovejoy, Meteor, Pleiades, California Nebula and Milky Way seen over La Silla Observatory

Image
In this ESO image, nightfall raises the curtain on a theatrical display taking place in the cloudless skies over La Silla. In a scene humming with activity, the major players captured here are Comet Lovejoy, glowing green in the centre of the image; the Pleiades above and to the right; and the California Nebula, providing some contrast in the form of a red arc of gas directly to the right of Lovejoy. A meteor adds its own streak of light to the scene, seeming to plunge into the hazy pool of green light collecting along the horizon. The telescopes of La Silla provide an audience for this celestial performance, and a thin shroud of low altitude cloud clings to the plain below the observatory streaked by the Panamericana Highway. Comet Lovejoy’s long tail is being pushed away from the comet by the solar wind. Carbon compounds that have been excited by ultraviolet radiation from the Sun give it its striking green hue. This is the first time the comet has passed through the inner Solar Syst...

Lightning Storm and the Milky Way Galaxy

Image
Punta Banco, Costa Rica Image Credit & Copyright: Ben Cherry

The Crab Nebula

Image
The Crab Nebula, which also goes by the names Messier 1, NGC 1952 and Taurus A, is one of the best studied astronomical objects in the sky. It is the remnant of a supernova explosion which was observed by Chinese astronomers in 1054. The tangled filaments visible in this image are the remains of the exploded star, which are still expanding outwards at about 1500 kilometres per second. Although not visible to the naked eye due to foreground filaments of helium and hydrogen the heart of the nebula hosts two faint stars. It is one of these that is responsible for the nebula that we see today — a star that is known as the Crab Pulsar, or CM Tau. This is the small, dense, corpse of the original star that caused the supernova. It is now only about 20 kilometres in diameter and rotates around its axis 30 times every second! The star emits pulses of radiation in all wavelengths, ranging from gamma rays — for which it is one of the brightest sources in the sky — to radio waves. The radiation fr...

Exoplanet CVSO 30c

Image
Astronomers hunt for planets orbiting other stars (exoplanets) using a variety of methods. One successful method is direct imaging; this is particularly effective for planets on wide orbits around young stars, because the light from the planet is not overwhelmed by light from the host star and is thus easier to spot. This image demonstrates this technique. It shows a T-Tauri star named CVSO 30, located approximately 1200 light-years away from Earth in the 25 Orionis group (slightly northwest of Orion’s famous Belt). In 2012, astronomers found that CVSO 30 hosted one exoplanet (CVSO 30b) using a detection method known as transit photometry, where the light from a star observably dips as a planet travels in front of it. Now, astronomers have gone back to look at the system using a number of telescopes. The study combines observations obtained with the ESO’s Very Large Telescope (VLT) in Chile, the W. M. Keck Observatory in Hawaii, and the Calar Alto Observatory facilities in Spain. Using...

Milky Way, VLT & LGS

Image
Taken from inside the dome of the fourth Unit Telescope of ESO’s Very Large Telescope (VLT), this spectacular shot from ESO Photo Ambassador Yuri Beletsky captures the VLT’s Laser Guide Star (LGS) in action. The LGS, located on top of the 1.2-metre secondary mirror of Unit Telescope 4, is part of the VLT’s adaptive optics system. By creating a glowing spot — an artificial star — in the Earth’s atmosphere at an altitude of 90 kilometres, the light coming back from the laser can be used as a reference to remove the effects of atmospheric distortion. This allows the telescope to produce astronomical images almost as sharp as if the telescope were in space. The plane of the Milky Way, seemingly pierced by the laser as it soars above the open dome of the telescope, is rippled with dark clouds of interstellar dust that block visible light. However, thanks to the telescope’s infrared instruments and the adaptive optics system, astronomers can study and image our galaxy’s complex and turbulent...

Sakurajima Volcano Eruption

Image
Kagoshima Prefecture, Japan July 26, 2016 Image Credit: Asahi Shimbun

Spiral Galaxy ESO 499-G37

Image
The NASA/ESA Hubble Space Telescope has spotted the spiral galaxy ESO 499-G37, seen here against a backdrop of distant galaxies, scattered with nearby stars. The galaxy is viewed from an angle, allowing Hubble to reveal its spiral nature clearly. The faint, loose spiral arms can be distinguished as bluish features swirling around the galaxy’s nucleus. This blue tinge emanates from the hot, young stars located in the spiral arms. The arms of a spiral galaxy have large amounts of gas and dust, and are often areas where new stars are constantly forming. The galaxy’s most characteristic feature is a bright elongated nucleus. The bulging central core usually contains the highest density of stars in the galaxy, where typically a large group of comparatively cool old stars are packed in this compact, spheroidal region. One feature common to many spiral galaxies is the presence of a bar running across the centre of the galaxy. These bars are thought to act as a mechanism that channels gas from...

The centre of the Lagoon Nebula

Image
A spectacular NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light...

The Milky Way Galaxy seen over Painted Hills

Image
With very little light pollution, the glimmering stars of the Milky Way bathe the colourful layers of the Painted Hills of Oregon, USA in a natural glow. Image Credit & Copyright: Nicholas Roemmelt Explanation by: Royal Observatory Greenwich

Dark Nebula Barnard 59

Image
The Pipe Nebula (Barnard 59) is a prime example of a dark nebula. Originally, astronomers believed these were areas in space where there were no stars. But it was later discovered that dark nebulae actually consist of clouds of interstellar dust so thick it can block out the light from the stars beyond. The Pipe Nebula appears silhouetted against the rich star clouds close to the centre of the Milky Way in the constellation of Ophiuchus (The Serpent Bearer). Barnard 59 forms the mouthpiece of the Pipe Nebula and is the subject of this image from the Wide Field Imager on the MPG/ESO 2.2-metre telescope. This strange and complex dark nebula lies about 600–700 light-years away from Earth. The nebula is named after the American astronomer Edward Emerson Barnard who was the first to systematically record dark nebulae using long-exposure photography and one of those who recognised their dusty nature. Barnard catalogued a total of 370 dark nebulae all over the sky. A self-made man, he bought ...

Colliding Galaxies NGC 3921

Image
It is known today that merging galaxies play a large role in the evolution of galaxies and the formation of elliptical galaxies in particular. However there are only a few merging systems close enough to be observed in depth. The pair of interacting galaxies picture seen here — known as NGC 3921 — is one of these systems. NGC 3921 — found in the constellation of Ursa Major (The Great Bear) — is an interacting pair of disc galaxies in the late stages of its merger. Observations show that both of the galaxies involved were about the same mass and collided about 700 million years ago. You can see clearly in this image the disturbed morphology, tails and loops characteristic of a post-merger. The clash of galaxies caused a rush of star formation and previous Hubble observations showed over 1000 bright, young star clusters bursting to life at the heart of the galaxy pair. Image Credit: ESA/Hubble & NASA, Judy Schmidt Explanation from: https://www.spacetelescope.org/images/potw1537a/

Supercell over Nebraska

Image
Nebraska, USA Image Credit & Copyright: Stephen Lansdell

Star-Forming Region Messier 78

Image
In this image of the nebula Messier 78, young stars cast a bluish pall over their surroundings, while red fledgling stars peer out from their cocoons of cosmic dust. To our eyes, most of these stars would be hidden behind the dust, but ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) sees near-infrared light, which passes right through dust. The telescope is like a giant dustbuster that lets astronomers probe deep into the heart of the stellar environment. Messier 78, or M78, is a well-studied example of a reflection nebula. It is located approximately 1600 light-years away in the constellation of Orion (The Hunter), just to the upper left of the three stars that make up the belt of this familiar landmark in the sky. In this image, Messier 78 is the central, bluish haze in the centre; the other reflection nebula towards the right goes by the name of NGC 2071. The French astronomer Pierre Méchain is credited with discovering Messier 78 in 1780. However, it is today more...

The centre of spiral galaxy NGC 247

Image
This Hubble image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy). NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas. This galaxy displays one particularly unusual and mysterious feature — it is not visible in this image, but can be seen clearly in wider views of the galaxy, such as this picture from ESO’s MPG/ESO 2.2-metre telescope. The northern part of NGC 247’s disc hosts an apparent v...

Earth, 8 billion years from now

Image
After fusing helium in its core to carbon, the Sun will begin to collapse again, evolving into a compact white dwarf star after ejecting its outer atmosphere as a planetary nebula. In 50 billion years, if the Earth and Moon are not engulfed by the Sun, they will become tidelocked, with each showing only one face to the other. Thereafter, the tidal action of the Sun will extract angular momentum from the system, causing the lunar orbit to decay and the Earth's spin to accelerate. Over time intervals of around 30 trillion years, the Sun will undergo a close encounter with another star. As a consequence, the orbits of their planets can become disrupted, potentially ejecting them from the system entirely. If Earth is not destroyed by the expanding red giant Sun in 7.6 billion years and not ejected from its orbit by a stellar encounter, its ultimate fate will be that it collides with the black dwarf Sun due to the decay of its orbit via gravitational radiation, in 100 quintillion years....

Aurora over Indian Ocean seen from the International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

Lenticular Galaxy NGC 6861

Image
The subject of this image is NGC 6861, a galaxy discovered in 1826 by the Scottish astronomer James Dunlop. Almost two centuries later we now know that NGC 6861 is the second brightest member of a group of at least a dozen galaxies called the Telescopium Group — otherwise known as the NGC 6868 Group — in the small constellation of Telescopium (The Telescope). This NASA/ESA Hubble Space Telescope view shows some important details of NGC 6861. One of the most prominent features is the disc of dark bands circling the centre of the galaxy. These dust lanes are a result of large clouds of dust particles obscuring the light emitted by the stars behind them. Dust lanes are very useful for working out whether we are seeing the galaxy disc edge-on, face-on or, as is the case for NGC 6861, somewhat in the middle. Dust lanes like these are typical of a spiral galaxy. The dust lanes are embedded in a white oval shape, which is made up of huge numbers of stars orbiting the centre of the galaxy. Thi...

Sunrise, 7 billion years from now

Image
Once the Sun changes from burning hydrogen at its core to burning hydrogen around its shell, the core will start to contract and the outer envelope will expand. The total luminosity will steadily increase over the following billion years until it reaches 2,730 times the Sun's current luminosity at the age of 12.167 billion years. Most of Earth's atmosphere will be lost to space and its surface will consist of a lava ocean with floating continents of metals and metal oxides as well as icebergs of refractory materials, with its surface temperature reaching more than 2,400 K (2,130 °C; 3,860 °F). The Sun will experience more rapid mass loss, with about 33% of its total mass shed with the solar wind. The loss of mass will mean that the orbits of the planets will expand. The orbital distance of the Earth will increase to at most 150% of its current value. The most rapid part of the Sun's expansion into a red giant will occur during the final stages, when the Sun will be about 12...

Moon and Earth's Atmosphere seen from International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

Planetary Nebula Menzel 2

Image
This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the Sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its centre. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thous...

Earth, 1 billion years from now

Image
One billion years from now, about 27% of the modern ocean will have been subducted into the mantle. If this process were allowed to continue uninterrupted, it would reach an equilibrium state where 65% of the current surface reservoir would remain at the surface. Once the solar luminosity is 10% higher than its current value, the average global surface temperature will rise to 320 K (47 °C; 116 °F). The atmosphere will become a "moist greenhouse" leading to a runaway evaporation of the oceans. At this point, models of the Earth's future environment demonstrate that the stratosphere would contain increasing levels of water. These water molecules will be broken down through photodissociation by solar ultraviolet radiation, allowing hydrogen to escape the atmosphere. The net result would be a loss of the world's sea water by about 1.1 billion years from the present. This will be a simple dramatic step in annihilating all life on Earth. There will be two variations of thi...

Earth's Atmosphere seen from International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

Elliptical Galaxy Messier 84

Image
This NASA/ESA Hubble Space Telescope image captures the galaxy Messier 84 — also known as NGC 4374 — an object from the Messier catalogue, published in its final version in 1781 by Charles Messier. This elliptical galaxy was discovered in March 1781 and lies about 60 million light-years away from Earth in the constellation of Virgo (The Virgin). The galaxy is part of the very heavily populated centre of the Virgo Cluster, a cluster which consists of more than 1000 galaxies. This image does not show the whole galaxy but only its very interesting centre, and is likely to be the best image of the region ever captured. Previous observations using Hubble’s Space Telescope Imaging Spectrograph (STIS) revealed a supermassive black hole in the centre of Messier 84. Astronomers found the supermassive black hole by mapping the motion of the gas and the stars which are caught in its grip. Next to its interesting centre Messier 84 is also known for its supernovae. Two supernovae have been observed...

Future of Earth

Image
The biological and geological future of Earth can be extrapolated based upon the estimated effects of several long-term influences. These include the chemistry at Earth's surface, the rate of cooling of the planet's interior, the gravitational interactions with other objects in the Solar System, and a steady increase in the Sun's luminosity. An uncertain factor in this extrapolation is the ongoing influence of technology introduced by humans, such as climate engineering, which could cause significant changes to the planet. The current Holocene extinction is being caused by technology and the effects may last for up to five million years. In turn, technology may result in the extinction of humanity, leaving the planet to gradually return to a slower evolutionary pace resulting solely from long-term natural processes. Over time intervals of hundreds of millions of years, random celestial events pose a global risk to the biosphere, which can result in mass extinctions. These i...

Aurora over Canada seen from the International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

Dark Nebula Lupus 3

Image
An evocative image from ESO shows a dark cloud where new stars are forming, along with a cluster of brilliant stars that have already emerged from their dusty stellar nursery. The picture was taken with the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile and is the best image ever taken in visible light of this little-known object. On the left of this image there is a dark column resembling a cloud of smoke. To the right shines a small group of brilliant stars. At first glance these two features could not be more different, but they are in fact closely linked. The cloud contains huge amounts of cool cosmic dust and is a nursery where new stars are being born. It is likely that the Sun formed in a similar star formation region more than four billion years ago. This cloud is known as Lupus 3 and it lies about 600 light-years from Earth in the constellation of Scorpius (The Scorpion). The section shown here is about five light-years across. As the denser parts of such clo...

Colonization of land by Life on Earth

Image
Oxygen accumulation from photosynthesis resulted in the formation of an ozone layer that absorbed much of the Sun's ultraviolet radiation, meaning unicellular organisms that reached land were less likely to die, and prokaryotes began to multiply and become better adapted to survival out of the water. Prokaryote lineages had probably colonized the land as early as 2.6 Ga even before the origin of the eukaryotes. For a long time, the land remained barren of multicellular organisms. The supercontinent Pannotia formed around 600 Ma and then broke apart a short 50 million years later. Fish, the earliest vertebrates, evolved in the oceans around 530 Ma. A major extinction event occurred near the end of the Cambrian period, which ended 488 Ma. Several hundred million years ago, plants (probably resembling algae) and fungi started growing at the edges of the water, and then out of it. The oldest fossils of land fungi and plants date to 480–460 Ma, though molecular evidence suggests the fun...

Moon seen from the International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

The colourful star cluster NGC 3590

Image
This colourful new image from the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile shows the star cluster NGC 3590. These stars shine brightly in front of a dramatic landscape of dark patches of dust and richly hued clouds of glowing gas. This small stellar gathering gives astronomers clues about how these stars form and evolve — as well as giving hints about the structure of our galaxy's pinwheeling arms. NGC 3590 is a small open cluster of stars around 7500 light-years from Earth, in the constellation of Carina (The Keel). It is a gathering of dozens of stars loosely bound together by gravity and is roughly 35 million years old. This cluster is not just pretty; it is very useful to astronomers. By studying this particular cluster — and others nearby — astronomers can explore the properties of the spiral disc of our galaxy, the Milky Way. NGC 3590 is located in the largest single segment of a spiral arm that can be seen from our position in the galaxy: the Ca...

Cambrian explosion of Life on Earth

Image
The rate of the evolution of life as recorded by fossils accelerated in the Cambrian period (542–488 Ma). The sudden emergence of many new species, phyla, and forms in this period is called the Cambrian Explosion. The biological fomenting in the Cambrian Explosion was unpreceded before and since that time. Whereas the Ediacaran life forms appear yet primitive and not easy to put in any modern group, at the end of the Cambrian most modern phyla were already present. The development of hard body parts such as shells, skeletons or exoskeletons in animals like molluscs, echinoderms, crinoids and arthropods (a well-known group of arthropods from the lower Paleozoic are the trilobites) made the preservation and fossilization of such life forms easier than those of their Proterozoic ancestors. For this reason, much more is known about life in and after the Cambrian than about that of older periods. Some of these Cambrian groups appear complex but are quite different from modern life; examples...

Sun's reflection on Atlantic Ocean seen from the International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

The Pencil Nebula: Remnants of an Exploded Star

Image
Remnants from a star that exploded thousands of years ago created a celestial abstract portrait, as captured in this NASA Hubble Space Telescope image of the Pencil Nebula. Officially known as NGC 2736, the Pencil Nebula is part of the huge Vela supernova remnant, located in the southern constellation Vela. Discovered by Sir John Herschel in the 1840s, the nebula's linear appearance triggered its popular name. The nebula's shape suggests that it is part of the supernova shock wave that recently encountered a region of dense gas. It is this interaction that causes the nebula to glow, appearing like a rippled sheet. In this snapshot, astronomers are looking along the edge of the undulating sheet of gas. This view shows large, wispy filamentary structures, smaller bright knots of gas, and patches of diffuse gas. The Hubble Heritage Team used the Advanced Camera for Surveys in October 2002 to observe the nebula. The region of the Pencil Nebula captured in this image is about three ...

Snowball Earth

Image
The natural evolution of the Sun made it progressively more luminous during the Archean and Proterozoic eons; the Sun's luminosity increases 6% every billion years. As a result, the Earth began to receive more heat from the Sun in the Proterozoic eon. However, the Earth did not get warmer. Instead, the geological record seems to suggest it cooled dramatically during the early Proterozoic. Glacial deposits found in South Africa date back to 2.2 Ga, at which time, based on paleomagnetic evidence, they must have been located near the equator. Thus, this glaciation, known as the Makganyene glaciation, may have been global. Some scientists suggest this was so severe that the Earth was totally frozen over from the poles to the equator, a hypothesis called Snowball Earth. The ice age around 2.3 Ga could have been directly caused by the increased oxygen concentration in the atmosphere, which caused the decrease of methane (CH4) in the atmosphere. Methane is a strong greenhouse gas, but wit...

Earth seen from the International Space Station

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA

Colliding Galaxies NGC 6872 • IC 4970

Image
This picture, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth. From tip to tip, NGC 6872 measures over 500 000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100 000 and 120 000 light-years across, making NGC 6872 about five times its size. The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm — although ...

Photosynthesis Evolution and Oxygen Revolution on Earth

Image
Photosynthesis Evolution Early photosynthetic systems, such as those in green and purple sulfur and green and purple nonsulfur bacteria, are thought to have been anoxygenic, and used various other molecules as electron donors rather than water. Green and purple sulfur bacteria are thought to have used hydrogen and sulfur as electron donors. Green nonsulfur bacteria used various amino and other organic acids as an electron donor. Purple nonsulfur bacteria used a variety of nonspecific organic molecules. The use of these molecules is consistent with the geological evidence that Earth's early atmosphere was highly reducing at that time. Fossils of what are thought to be filamentous photosynthetic organisms have been dated at 3.4 billion years old. The main source of oxygen in the Earth's atmosphere derives from oxygenic photosynthesis, and its first appearance is sometimes referred to as the oxygen catastrophe. Geological evidence suggests that oxygenic photosynthesis, such as tha...

Flying Through an Aurora

Image
ISS, Orbit of the Earth August 2016 Image Credit: NASA/ESA